Python JIT(Just In Time)是通过 copy-and-patch 编译技术实现的。copy-andpatch 是什么,其实现原理是什么?
In computing, copy-and-patch compilation is a simple compiler technique intended for just-in-time compilation (JIT compilation) that uses pattern matching to match pre-generated templates to parts of an abstract syntax tree (AST) or bytecode stream, and emit corresponding pre-written machine code fragments that are then patched to insert memory addresses, register addresses, constants and other parameters to produce executable code. Code not matched by templates can be either be interpreted in the normal way, or code created to directly call interpreter code.
在计算中,复制和修补编译是一种简单的编译器技术,旨在用于即时编译,它使用模式匹配将预生成的模板与抽象语法树或字节码流的部分进行匹配,并发出相应的预编写机器然后修补代码片段以插入内存地址、寄存器地址、常量和其他参数以生成可执行代码。与模板不匹配的代码可以以正常方式解释,也可以创建代码来直接调用解释器代码。
使用 docker 搭建研究环境
Python JIT 目前还在实验阶段,编译条件依赖 llvm 和 clang-19,导致 Python-3.14.0a 的编译过程变得异常复杂。接下来研究的环境继续使用 docker。可以执行如下 shell 进入镜像:
sudo docker run -it \
-v /home/yourhome/Python-3.14.0a2:/home/yourhome/Python-3.14.0a2 \
"silkeh/clang:19"
执行脚本生成 jit_stencils.h
这里再详细的描述一下 jit_stencils.h 的生成过程。我们将如下 shell 的输出重定向到 output.txt。
python3 ./Tools/jit/build.py x86_64-pc-linux-gnu \
--debug -v -f > output.txt
# x86_64-pc-linux-gnu 是编译工具链
# --debug 开启 debug 模式
# -v 输出调试信息,也就是脚本中的执行命令,主要包括
# -f 强制执行,输出文件 jit_stencils.h
通过 awk 和 uniq 命令可以统计生成过程中调用了哪些命令行工具,根据输出结果,我们也可以推断出程序对 268 个指令进行了转换和机器代码提取。
cat 1.txt | grep -v version | awk '{print $1}' | sort | uniq -c
# 268 clang
# 268 llvm-objdump
# 268 llvm-readobj
通过执行命令 cat jit_stencils.h |grep -oP '{emit_' | uniq -c
验证了我们的推断是正确的,但是其中有一个指令是 emit_shim
。
clang 做了什么?
clang --target=x86_64-pc-linux-gnu \
-DPy_BUILD_CORE_MODULE -D_DEBUG -D_JIT_OPCODE=_BINARY_OP -D_PyJIT_ACTIVE -D_Py_JIT \
-I. -I/home/yourhome/Python-3.14.0a2/Include \
-I/home/yourhome/Python-3.14.0a2/Include/internal \
-I/home/yourhome/Python-3.14.0a2/Include/internal/mimalloc \
-I/home/yourhome/Python-3.14.0a2/Python \
-I/home/yourhome/Python-3.14.0a2/Tools/jit \
-O3 \
-c -fno-asynchronous-unwind-tables -fno-builtin -fno-plt -fno-stack-protector -std=c11 \
-o /tmp/tmp1u5tn8__/_BINARY_OP.o \
/tmp/tmp1u5tn8__/_BINARY_OP.c -fpic
- –taget 就是编译工具链
D 宏的定义
<macro>=<value>
Define <macro> to <value> (or 1 if <value> omitted)
Disable control flow integrity (CFI) checks for cross-DSO calls.
Enable control flow integrity (CFI) checks for cross-DSO calls.-03 很好理解,就是使用最佳性能优化
‘-O3’ to enable only conforming optimizations
- -I 引入头文件
- -c 只运行预处理、编译和装配步骤 > Only run preprocess, compile, and assemble steps
clang 命令行工具的参数太多了,全部介绍意义不大,我将上面几个比较重要的做了一下说明。-o 后面的值是生成的 object 文件路径,临时文件 /tmp/tmp1u5tn8/BINARYOP.c 是将 Python/executorcases.c.h 中 case _BINARYOP 的代码块拷贝插入模版文件后生成的 c 文件。我们稍微调整一下 Python 的代码,读取 c 文件,然后将 /tmp/tmp1u5tn8/BINARYOP.c 的内容打印出来。
# Tools/jit/_targets.py+143
with open(c) as file:
print('=' * 80)
print(file.read())
print('=' * 80)
await _llvm.run("clang", args, echo=self.verbose)
如下 c 代码是指令 BINARYOP 模版嵌套后生成的代码。从代码可以看出,该文件引入了大量的头文件,添加了一堆预处理定义,对照其它指令生成的 c 文件,你会发现文件大部分的内容都是相同的,不同之处就是 case 的代码块,而这个 case 的代码块是从文件 Python/executor_cases.c.h 对应的 case 复制过来的。
#include "Python.h"
#include "pycore_backoff.h"
#include "pycore_call.h"
#include "pycore_ceval.h"
#include "pycore_cell.h"
#include "pycore_dict.h"
#include "pycore_emscripten_signal.h"
#include "pycore_intrinsics.h"
#include "pycore_jit.h"
#include "pycore_long.h"
#include "pycore_opcode_metadata.h"
#include "pycore_opcode_utils.h"
#include "pycore_optimizer.h"
#include "pycore_pyatomic_ft_wrappers.h"
#include "pycore_range.h"
#include "pycore_setobject.h"
#include "pycore_sliceobject.h"
#include "pycore_descrobject.h"
#include "pycore_stackref.h"
#include "ceval_macros.h"
#include "jit.h"
#undef CURRENT_OPARG
#define CURRENT_OPARG() (_oparg)
#undef CURRENT_OPERAND0
#define CURRENT_OPERAND0() (_operand0)
#undef CURRENT_OPERAND1
#define CURRENT_OPERAND1() (_operand1)
#undef DEOPT_IF
#define DEOPT_IF(COND, INSTNAME) \
do { \
if ((COND)) { \
goto deoptimize; \
} \
} while (0)
#undef ENABLE_SPECIALIZATION
#define ENABLE_SPECIALIZATION (0)
#undef GOTO_ERROR
#define GOTO_ERROR(LABEL) \
do { \
goto LABEL ## _tier_two; \
} while (0)
#undef GOTO_TIER_TWO
#define GOTO_TIER_TWO(EXECUTOR) \
do { \
OPT_STAT_INC(traces_executed); \
__attribute__((musttail)) \
return ((jit_func_preserve_none)((EXECUTOR)->jit_side_entry))(frame, stack_pointer, tstate); \
} while (0)
#undef GOTO_TIER_ONE
#define GOTO_TIER_ONE(TARGET) \
do { \
_PyFrame_SetStackPointer(frame, stack_pointer); \
return TARGET; \
} while (0)
#undef LOAD_IP
#define LOAD_IP(UNUSED) \
do { \
} while (0)
#define PATCH_VALUE(TYPE, NAME, ALIAS) \
PyAPI_DATA(void) ALIAS; \
TYPE NAME = (TYPE)(uintptr_t)&ALIAS;
#define PATCH_JUMP(ALIAS) \
do { \
PyAPI_DATA(void) ALIAS; \
__attribute__((musttail)) \
return ((jit_func_preserve_none)&ALIAS)(frame, stack_pointer, tstate); \
} while (0)
#undef JUMP_TO_JUMP_TARGET
#define JUMP_TO_JUMP_TARGET() PATCH_JUMP(_JIT_JUMP_TARGET)
#undef JUMP_TO_ERROR
#define JUMP_TO_ERROR() PATCH_JUMP(_JIT_ERROR_TARGET)
#undef WITHIN_STACK_BOUNDS
#define WITHIN_STACK_BOUNDS() 1
#define TIER_TWO 2
__attribute__((preserve_none)) _Py_CODEUNIT *
_JIT_ENTRY(_PyInterpreterFrame *frame, _PyStackRef *stack_pointer, PyThreadState *tstate)
{
// Locals that the instruction implementations expect to exist:
PATCH_VALUE(_PyExecutorObject *, current_executor, _JIT_EXECUTOR)
int oparg;
int uopcode = _JIT_OPCODE;
_Py_CODEUNIT *next_instr;
// Other stuff we need handy:
PATCH_VALUE(uint16_t, _oparg, _JIT_OPARG)
#if SIZEOF_VOID_P == 8
PATCH_VALUE(uint64_t, _operand0, _JIT_OPERAND0)
PATCH_VALUE(uint64_t, _operand1, _JIT_OPERAND1)
#else
assert(SIZEOF_VOID_P == 4);
PATCH_VALUE(uint32_t, _operand0_hi, _JIT_OPERAND0_HI)
PATCH_VALUE(uint32_t, _operand0_lo, _JIT_OPERAND0_LO)
uint64_t _operand0 = ((uint64_t)_operand0_hi << 32) | _operand0_lo;
PATCH_VALUE(uint32_t, _operand1_hi, _JIT_OPERAND1_HI)
PATCH_VALUE(uint32_t, _operand1_lo, _JIT_OPERAND1_LO)
uint64_t _operand1 = ((uint64_t)_operand1_hi << 32) | _operand1_lo;
#endif
PATCH_VALUE(uint32_t, _target, _JIT_TARGET)
OPT_STAT_INC(uops_executed);
UOP_STAT_INC(uopcode, execution_count);
switch (uopcode) {
// The actual instruction definition gets inserted here:
case _BINARY_OP: {
_PyStackRef rhs;
_PyStackRef lhs;
_PyStackRef res;
oparg = CURRENT_OPARG();
rhs = stack_pointer[-1];
lhs = stack_pointer[-2];
PyObject *lhs_o = PyStackRef_AsPyObjectBorrow(lhs);
PyObject *rhs_o = PyStackRef_AsPyObjectBorrow(rhs);
assert(_PyEval_BinaryOps[oparg]);
_PyFrame_SetStackPointer(frame, stack_pointer);
PyObject *res_o = _PyEval_BinaryOps[oparg](lhs_o, rhs_o);
stack_pointer = _PyFrame_GetStackPointer(frame);
PyStackRef_CLOSE(lhs);
PyStackRef_CLOSE(rhs);
if (res_o == NULL) JUMP_TO_ERROR();
res = PyStackRef_FromPyObjectSteal(res_o);
stack_pointer[-2] = res;
stack_pointer += -1;
assert(WITHIN_STACK_BOUNDS());
break;
}
default:
Py_UNREACHABLE();
}
PATCH_JUMP(_JIT_CONTINUE);
// Labels that the instruction implementations expect to exist:
error_tier_two:
tstate->previous_executor = (PyObject *)current_executor;
GOTO_TIER_ONE(NULL);
exit_to_tier1:
tstate->previous_executor = (PyObject *)current_executor;
GOTO_TIER_ONE(_PyCode_CODE(_PyFrame_GetCode(frame)) + _target);
exit_to_tier1_dynamic:
tstate->previous_executor = (PyObject *)current_executor;
GOTO_TIER_ONE(frame->instr_ptr);
}
llvm-objdump 做了什么?
llvm-objdump 用来生成 codebody 的注释。光看代码,不自己实践一下,很难加深理解(如果命令执行失败,试着去掉 \ 和换行,让命令保持一行执行)。将上面的 c 代码拷贝到一个文件中,然后替换一下 clang 命令中的 c 文件名称,执行命令生成 .o 文件。拿到文件之后,我们就可以执行 llvm-objdump 输出 object dump 了,如果你对这些比较敏感的话,就会发现,输出内容其实就是 jitstencils.h 每个 emit 函数的注释。
llvm-objdump --disassemble --reloc \
/tmp/tmp1u5tn8__/_BINARY_OP.o
object dump 如下:
llvm-objdump --disassemble --reloc /tmp/_BINARY_OP.o
/tmp/_BINARY_OP.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <_JIT_ENTRY>:
0: 55 pushq %rbp
1: 0f b7 05 00 00 00 00 movzwl (%rip), %eax # 0x8 <_JIT_ENTRY+0x8>
0000000000000004: R_X86_64_GOTPCREL _JIT_OPARG-0x4
8: 48 8b 0d 00 00 00 00 movq (%rip), %rcx # 0xf <_JIT_ENTRY+0xf>
000000000000000b: R_X86_64_REX_GOTPCRELX _PyEval_BinaryOps-0x4
f: 48 8b 04 c1 movq (%rcx,%rax,8), %rax
13: 48 85 c0 testq %rax, %rax
16: 0f 84 e2 00 00 00 je 0xfe <_JIT_ENTRY+0xfe>
1c: 49 83 7c 24 40 00 cmpq $0x0, 0x40(%r12)
22: 0f 85 f6 00 00 00 jne 0x11e <_JIT_ENTRY+0x11e>
28: 49 8b 6d f0 movq -0x10(%r13), %rbp
2c: 4d 8b 7d f8 movq -0x8(%r13), %r15
30: 4d 89 6c 24 40 movq %r13, 0x40(%r12)
35: 48 89 ef movq %rbp, %rdi
38: 4c 89 fe movq %r15, %rsi
3b: ff d0 callq *%rax
3d: 4d 8b 6c 24 40 movq 0x40(%r12), %r13
42: 4d 85 ed testq %r13, %r13
45: 0f 84 f3 00 00 00 je 0x13e <_JIT_ENTRY+0x13e>
4b: 48 89 c3 movq %rax, %rbx
4e: 49 c7 44 24 40 00 00 00 00 movq $0x0, 0x40(%r12)
57: 48 8b 45 00 movq (%rbp), %rax
5b: 48 85 c0 testq %rax, %rax
5e: 7e 06 jle 0x66 <_JIT_ENTRY+0x66>
60: 85 c0 testl %eax, %eax
62: 79 1f jns 0x83 <_JIT_ENTRY+0x83>
64: eb 29 jmp 0x8f <_JIT_ENTRY+0x8f>
66: 48 8d 3d 00 00 00 00 leaq (%rip), %rdi # 0x6d <_JIT_ENTRY+0x6d>
0000000000000069: R_X86_64_PC32 .L.str.1-0x4
6d: be 89 00 00 00 movl $0x89, %esi
72: 48 89 ea movq %rbp, %rdx
75: ff 15 00 00 00 00 callq *(%rip) # 0x7b <_JIT_ENTRY+0x7b>
0000000000000077: R_X86_64_GOTPCRELX _Py_NegativeRefcount-0x4
7b: 48 8b 45 00 movq (%rbp), %rax
7f: 85 c0 testl %eax, %eax
81: 78 0c js 0x8f <_JIT_ENTRY+0x8f>
83: ff 15 00 00 00 00 callq *(%rip) # 0x89 <_JIT_ENTRY+0x89>
0000000000000085: R_X86_64_GOTPCRELX _Py_DECREF_DecRefTotal-0x4
89: 48 ff 4d 00 decq (%rbp)
8d: 74 0e je 0x9d <_JIT_ENTRY+0x9d>
8f: 49 8b 07 movq (%r15), %rax
92: 48 85 c0 testq %rax, %rax
95: 7e 17 jle 0xae <_JIT_ENTRY+0xae>
97: 85 c0 testl %eax, %eax
99: 79 2f jns 0xca <_JIT_ENTRY+0xca>
9b: eb 38 jmp 0xd5 <_JIT_ENTRY+0xd5>
9d: 48 89 ef movq %rbp, %rdi
a0: ff 15 00 00 00 00 callq *(%rip) # 0xa6 <_JIT_ENTRY+0xa6>
00000000000000a2: R_X86_64_GOTPCRELX _Py_Dealloc-0x4
a6: 49 8b 07 movq (%r15), %rax
a9: 48 85 c0 testq %rax, %rax
ac: 7f e9 jg 0x97 <_JIT_ENTRY+0x97>
ae: 48 8d 3d 00 00 00 00 leaq (%rip), %rdi # 0xb5 <_JIT_ENTRY+0xb5>
00000000000000b1: R_X86_64_PC32 .L.str.1-0x4
b5: be 8a 00 00 00 movl $0x8a, %esi
ba: 4c 89 fa movq %r15, %rdx
bd: ff 15 00 00 00 00 callq *(%rip) # 0xc3 <_JIT_ENTRY+0xc3>
00000000000000bf: R_X86_64_GOTPCRELX _Py_NegativeRefcount-0x4
c3: 49 8b 07 movq (%r15), %rax
c6: 85 c0 testl %eax, %eax
c8: 78 0b js 0xd5 <_JIT_ENTRY+0xd5>
ca: ff 15 00 00 00 00 callq *(%rip) # 0xd0 <_JIT_ENTRY+0xd0>
00000000000000cc: R_X86_64_GOTPCRELX _Py_DECREF_DecRefTotal-0x4
d0: 49 ff 0f decq (%r15)
d3: 74 14 je 0xe9 <_JIT_ENTRY+0xe9>
d5: 48 85 db testq %rbx, %rbx
d8: 74 1d je 0xf7 <_JIT_ENTRY+0xf7>
da: 49 89 5d f0 movq %rbx, -0x10(%r13)
de: 49 83 c5 f8 addq $-0x8, %r13
e2: 5d popq %rbp
e3: ff 25 00 00 00 00 jmpq *(%rip) # 0xe9 <_JIT_ENTRY+0xe9>
00000000000000e5: R_X86_64_GOTPCRELX _JIT_CONTINUE-0x4
e9: 4c 89 ff movq %r15, %rdi
ec: ff 15 00 00 00 00 callq *(%rip) # 0xf2 <_JIT_ENTRY+0xf2>
00000000000000ee: R_X86_64_GOTPCRELX _Py_Dealloc-0x4
f2: 48 85 db testq %rbx, %rbx
f5: 75 e3 jne 0xda <_JIT_ENTRY+0xda>
f7: 5d popq %rbp
f8: ff 25 00 00 00 00 jmpq *(%rip) # 0xfe <_JIT_ENTRY+0xfe>
00000000000000fa: R_X86_64_GOTPCRELX _JIT_ERROR_TARGET-0x4
fe: 48 8d 3d 00 00 00 00 leaq (%rip), %rdi # 0x105 <_JIT_ENTRY+0x105>
0000000000000101: R_X86_64_PC32 .L.str-0x4
105: 48 8d 35 00 00 00 00 leaq (%rip), %rsi # 0x10c <_JIT_ENTRY+0x10c>
0000000000000108: R_X86_64_PC32 .L.str.1-0x4
10c: 48 8d 0d 00 00 00 00 leaq (%rip), %rcx # 0x113 <_JIT_ENTRY+0x113>
000000000000010f: R_X86_64_PC32 .L__PRETTY_FUNCTION__._JIT_ENTRY-0x4
113: ba 85 00 00 00 movl $0x85, %edx
118: ff 15 00 00 00 00 callq *(%rip) # 0x11e <_JIT_ENTRY+0x11e>
000000000000011a: R_X86_64_GOTPCRELX __assert_fail-0x4
11e: 48 8d 3d 00 00 00 00 leaq (%rip), %rdi # 0x125 <_JIT_ENTRY+0x125>
0000000000000121: R_X86_64_PC32 .L.str.3-0x4
125: 48 8d 35 00 00 00 00 leaq (%rip), %rsi # 0x12c <_JIT_ENTRY+0x12c>
0000000000000128: R_X86_64_PC32 .L.str.4-0x4
12c: 48 8d 0d 00 00 00 00 leaq (%rip), %rcx # 0x133 <_JIT_ENTRY+0x133>
000000000000012f: R_X86_64_PC32 .L__PRETTY_FUNCTION__._PyFrame_SetStackPointer-0x4
133: ba fa 00 00 00 movl $0xfa, %edx
138: ff 15 00 00 00 00 callq *(%rip) # 0x13e <_JIT_ENTRY+0x13e>
000000000000013a: R_X86_64_GOTPCRELX __assert_fail-0x4
13e: 48 8d 3d 00 00 00 00 leaq (%rip), %rdi # 0x145 <_JIT_ENTRY+0x145>
0000000000000141: R_X86_64_PC32 .L.str.5-0x4
145: 48 8d 35 00 00 00 00 leaq (%rip), %rsi # 0x14c <_JIT_ENTRY+0x14c>
0000000000000148: R_X86_64_PC32 .L.str.4-0x4
14c: 48 8d 0d 00 00 00 00 leaq (%rip), %rcx # 0x153 <_JIT_ENTRY+0x153>
000000000000014f: R_X86_64_PC32 .L__PRETTY_FUNCTION__._PyFrame_GetStackPointer-0x4
153: ba f1 00 00 00 movl $0xf1, %edx
158: ff 15 00 00 00 00 callq *(%rip) # 0x15e <_JIT_ENTRY+0x15e>
000000000000015a: R_X86_64_GOTPCRELX __assert_fail-0x4
llvm-readobj 做了什么?
llvm-readobj --elf-output-style=JSON \
--expand-relocs \
--section-data \
--section-relocations \
--section-symbols \
--sections /tmp/tmp1u5tn8__/_BINARY_OP.o
llvm-readobj 会输出 JSON 内容,解析这个 JSON,可以获取指令对应的机器代码。将 llvm-readobj 的 .o 文件替换为前面两个步骤使用的 .o 文件。执行上面被替换的命名输出 JSON,由于输出内容较多,就不全部展示,具体内容可以自己动手实践输出试试。const unsigned char code_body[350]
和 const unsigned char data_body[448]
中 16 进制 shellcode 都可以在这个 JSON 中找到,不过其内容是 10 进制的数组。JSON 主要由 FileSummary 和 数组 Sections 组成。
[
{
"FileSummary": {
"File": "/tmp/_BINARY_OP.o",
"Format": "elf64-x86-64",
"Arch": "x86_64",
"AddressSize": "64bit",
"LoadName": "<Not found>"
},
"Sections": [
{
"Section": {
"Index": 0,
"Name": {
"Name": "",
"Value": 0
},
...
}
}
]
}
]
也许你会好奇 JSON 里面有些什么。将 JSON 保存到文件内,使用命令行工具 jq(需要自己安装)查看:
cat binary_op.json | \
jq .[0].Sections[].Section.Name.Name | \
sed 's/"//g'
- .strtab
- .text
- .rela.text
- .rodata.str1.1
- .comment
- .note.GNU-stack
- .llvm_addrsig
- .symtab
code_body 的字节码可以通过如下命令查出:
cat binary_op.json | \
jq '.[0].Sections[].Section | select(.Name.Name== ".text") | .SectionData' | \
head
data_body 的字节码可以通过如下命令查出:
cat binary_op.json | \
jq '.[0].Sections[].Section | select(.Name.Name== ".rodata.str1.1") | .SectionData' | \
head
至于 jitstencils.h 每个 emit* 函数后面的函数调用,如 memcpy,patch64,patch32r,patchx866432rx 等等,就是一些内存拷贝,替换相应位置机器代码的操作,这里涉及的内容比较复杂,我会在后面的文章中详细分析。